
493 

2. ALEKSANDROV V.M., Asymptotic methods in contact problems of elasticity theory, PMM, 32, 
4, 1968. 

3. ANDREIKIV A.E., Three-dimensional Problems of Crack Theory. Naukova Dumka, Kiev, 1982. 
4. MARTYNENKO M.D., Certain three-dimensional problems of elasticity theory, in: Strength 

and Plasticity, Nauka, Moscow, 1971. 
5. MOSSAKOVSKII V.I. and MOSSAKOVSKAYA L.R., Strength of an elastic space weakened by a plane 

almost-circular crack, Gidrotayeromekhanikai Teoriya Uprugosti, 22, Izd. Dnepropetrovsk 
Gosud. Univ. Dnepropetrovsk, 1977. 

6. MOSSAKOVSKII V.I., KACHALOVSKAYA N.E. and GOLIKOVA S.S., Contact Problems of the Mathematical 
Theory of Elasticity. Naukova Dumka, Kiev, 1985. 

7. PANASYUK V.V., Ultimate Equilibrium of Brittle Bodies with Cracks. Naukova Dumka, Kiev, 
1968. 

8. POPOV G.YA., Elastic Stress Concentration around Stamps, Slits, Thin Inclusions, and 
Reinforcements, Nauka, Moscow, 1982. 

9. BAKHAREVICH I.S., On variations of the solutions of integrodifferential equations of mixed 
problems of elasticity theory when the domain varies, PMM, 49, 6, 1985. 

10. LUR'YE A.I., Theory of Elasticity. Nauka, Moscow, 1970. 
11. KASSIR M.K. and SIH G.C., Mechanics of Fracture, 2, Three-dimensional Crack Problems. 

Noordhoff, Leyden, 1975. 
12. MARTIN P.A., The discontinuity in the elastic displacement vector across a penny-shaped 

crack under arbitrary loads, J. Elast., 21, 2, 1982. 
13. PRIMULO M.F., Cm the determination of uniformly exact solutions of differential equations 

by the method of perturbation of coordinates, PMM, 26, 3, 1962. 
14. SIH G. and LIEBOWITZ G., Mathematical Theory of Brittle Fracture. Fracture, 2, Mir, Moscow, 

1975. 
15. BORODACHEV N.M., Application of the principle of minimum of complementary work for contact 

problems of the theory of elasticity, Prikl. Mekhan., 21, 9, 1985. 

Translated by M.D.F. 

PMM U.S.S.R.,Vo1.52,No.4,pp.493-498,1988 
Printed in Great Britain 

0021-8928/88 $lO.CO+O.OO 
01989 Pergamon Press plc 

THE NON-LINEAR DYNAMICS OF ELASTIC RODS* 

V.V. ELISEYEV 

The general equations of non-linear dynamics of elastic rods are examined 
taking tension, transverse shear, eccentricity, rotational inertia, and 
also initial stresses into account. A second-order theory is constructed 
for Timoshenko and classical-type models. A variational formulation is 
given forthdlinearised problem. Tension and shear effects are examined 
in the problem of the stability of a compressed column. 

1. Geometry and kinematics. A rod is considered below to be a deformable material 
line whose particles are solids /l/. A Lagrange coordinate s, O<s< 1 is introduced. This 
usually an arc coordinate in a reference configuration. The rod motion is determined by the 
time dependence of the radius-vector r(a,t) and the rotation tensor p (s, t) for each particle. 
Internal interactions are given by the force vector Q(s,t) and moment vector M (s, 1) with 
which a particle with coordinate s+o acts on a neighbour s- 0 (Q and IM change when 
the reference direction s is reversed). 

To assign an angular orientation, an orthogonal triple eh. is associated with eachparticle 
according to a certain rule; it is often assumed, say, that e,, = r,,' ((...)I = a/&; the zero 
subscript marks quantities in the reference configuration). By the,definition of the ro- 
tation tensor eL = P.ema. P = eLerO. Here and henceforth, the language of the direct tensor 
calculus is used /2/. The curvature vector and rod twist are introduced by the relationships 
eb' = 0 X ek, hl ='lrek X ek' As will be shown below, the vectors 

*Prikl.Matem.Mekhan.,52,4,635-641,1988 
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I- = r’ - P.r,‘, x==P--P.9, (1.1) 

are measures of the deformation. 
The equality P’ =x X P holds; it shows that x is defined only by the non-uniformity 

of the distribution of the rotations and is independent of the method of assigning ek. 
In the classic Kirchhoff-Clebsch model r=o is assumed; this is interpreted as the 

absence of tension and transverse shear. The non-linear dynamics for this case was examined 
in /3/. 

The velocity vector v (s,t) and angular velocity vector o(s,t) are introduced for each 
particle 

r' = v, P’ = 0 x P ((. . .)’ = a/at) 

From the equalities (r')' = (r')', (P)' = (P’)’ it follows that 

v' - 0 X r’ = r’ - 0 X r, 0’ = x’ - 0 X x 

The translation vector 6~ and a small rotation vector 60 are given during the variation 

of the actual configuration for each particle. Unlike 6r, 60 is not a variation of a vector 

but only denotes the accompanying vector for an antisymmetric tensor GP.PT = 60 x E ((. . .)r 
is the transposition symbol, 

the variations 

(r, = r.ek are components in 

and E is the unit tensor) so that 6P = 60 x P. We obtain for 

61' - 60 x r’ = 6r - 60 x r = ek6rk (1.2) 

60’ = 6x - 60 X 0 = ek6xk 

the basis ek). 

An expression for the virtual work for a solid is also needed below. The radius-vector 

of an arbitrary point of a body is R=r+x, where r is the radius-vector of a pole. Here 

R' = r’ + o x x, R” = r” + o’ x x + o x (m x x), 6R = 6r + 60 x x 

The work of the inertia force equals 

-JR".GRdm = -m[(v f o X e)‘.6r + (e X v’ f (J. 
0)‘) ’ 601 

me = j xdm. mJ = s (xZE - xx) dm 

(1.3) 

where e and J are the eccentricity vector and the inertia tensor, and m is the body mass. 

The inertial properties of the rod are given by the functions p(s), e(s,t), J(s,t), where 

e’=oxe,J’=LxJ-Jxo (1.4) 

We set m =~a?.? in (1.3) when calculating the work of the inertia force for the element 

ds. 

2. Fundamental variational equation and its corollary. Underlying the mechanics 

of elastic rods is the D'Alembert-Lagrange variational equation /2, 4/. For the section of 

the rod s~<s<s~ we postulate it in the form 

+e”)l~6r+[m-p(exv’+(J.0)‘)].6o-66n)dst_(Q.6r+M~6o)1~=0 (2.1) 

where the external force g and moment mas well as the strain energy n referred to unit 

length are introduced. Since (2.1) is true for an arbitrary interval, we have 

[Q' + q - p (v’ + e”)] *fir -I- IM’ -I- m - p (e X v’ -I- (J-o)‘)1 . (2.2) 
60 + Q-h’ + M-60 = 6H 

The expression for II is still unknown but it can be asserted that in "rigid" displace- 

ments, i.e., for 6r = oonst, 60 = 0 and 6r = 60 x r, 60 =const, we will have 6lJ = 0. We arrive 
at the equations 

Q’ + q = p (v’ + e”) (2.3) 

M’+r’~Q+rn=p(e~v’+(J.o)‘) 

expressing the momentum balance and the moment of the impulse. 

Taking account of (2.3) as well as (1.2), we reduce (2.2) to the form 

15rl = M.ek6xl, + Q.ekWk 

from which it follows that n is a function of %k and rt,. where 

(2.4) 
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M = ekXIlhtk, Q = e,alWN, 

For small strains it is possible to confine ourselves to the representation 

n = Qkprk + MkoXk + % bknXk% + bknrkrn + 2eknxkrn) 

and then 

(2.5) 

M =P.M,, + a-x +e.I’, Q =P-Q,, f b-r +x-e (2.6) 

where Q. and M, and force and moment vectors in the reference configuration (Qo=Qkoeko), while 

a, b, c , are stiffness tensors in the form a = i&eke,,, etc. The tensors a and b are symmetric; 
,c is not. 

Together with the kinematic formulas from Sect.1, (2.3) and (2.6) form a complete system 
in the non-linear dynamics of elastic rod when tension and shear, eccentricity and rotational 
inertia as well as the initial stresses are taken into account. To go over to the classical 
model it is possible to set r = 0 and get rid of the equation for Q in (2.6). 

Within the framework of the elucidated "direct approach" /l/ it is impossible to determine 
the tensor elastic moduli a,b,c. Analysis of the appropriate three-dimensional problems 
(like the Saint-Venant minimum problem) is necessary to evaluate them /5, 6,'. This also 
refers tothe inertial characteristics of the rod. 

As an illustration, we examine a straight rod clamped at the end r=O and compressed by 
a dead force Q at the end s=l (sketch). We take an unloaded configuration as reference. 
Let us take the simplest modification of the stiffness tensors 

a = Xa,<@re.;, b = ~bke&, e = 0 

where the directions e.k agree in the reference configuration with the directions i,],k in the 
Cartesian z,y,r system. We assume that the strain occurs in the zz plane; then the rotation 
is given by one angle 0. In the equilbrium position Q = -Qk, M'=Qx r'. 

Furthermore, using the geometric formulas and elasticity relationships 

I' C.bU6 a e, = ieos 0 - k sin 8, e,= j, el = i sin 8 f k cos 0 

x = fJ’j = ,,-‘.M, r = r’ _ e, = b-1.Q 

we arrive at the equation 

where E is the "Euler- critical load. If F>O, i.e., the tensile stiffness b, is greater 
than the shear stiffness 4, then (2.7) also has a negative root together with the usual 
positive root, which corresponds to buckling under tension. If b,<b,, then instability is 
possible only under compression, and just in the case 4~~1~1. These extraordinary effects 
are known for simplified models /7/. 

a,e* + Q sin.0 + ‘/,Q’ (b,-’ - b,-‘) sin 28 = 0 

The boundary conditions are O(O)= O'(I) = 0. After linearization, 
by solving the eigenvalue problem we arrive at an equation for 
the critical load 

(2.7) 

3. Imposition of a small strain on a finite strain. Let r,P, q,Q etc. receive 
small increments of the same order: r, =u, PI -0 X Pm fh,%, etc. Varying the general non- 
linear equations we obtain 

For instance, the 

Q1’ + q, = p (u + 6 x e)” (3.1) 
Ml -I- u' X Q + r’ x Q1 + ml = p I(0 x e) x v’ -I- e X 

u” + (J-e’ f 8 x J.o)‘l 

M, = e x M + a.8’ + e.y (y = u’ - 8 x r’) 

a = e X Q + b.v + B’.c 

last formula is derived thus: if follows from (2.6) that 

QI = P,.Q, + b.r + b-r, + x,*e + xae, 

Using relationships of the type 

bl=Oxb-bxB, r,=y+Bxr, Xx-6’+eXX 

we arrive at the expression for Q1 from (3.1). 
The equalities 

@)L= 8'+ B X eb), (J.cr),= J.e'+ 8 x J.o 

were used in varying the moment balance equation. 
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Eqs.(3.1) are equations of the first approximation in the theory of elastic rod stability. 

They are linear; the dependence of their coefficients on s and t is determined by the undis- 

turbed motion. For a small deformation from the rest state of no stress, the quantities Cj,M, 
" and o will be zero and (3.1) are converted into equations of the linear theory of rods. 

4. Second-order effects. Considering the unknowns to be small quantities of the same 

order q(9.e 0), we retain terms of order vs in all the equations. We use the following general 
representation of the rotation tensor /2/: 

P = E + e* x E sin 8 + e* x E X e* (1 - cos 0) (4.1) 

where 8 is the angle of rotation and e * is the direction of its axis. Considering 0 = O(rl) 
and introducing the vector 8 = ee*, we write (4.1) in the form 

P = E + e x E + v,e x E x e + 0 (q8) (4.2) 

Taking second-order terms into account, the geometric and kinematic relations will be 

el, = ekO + 8 x ekO + v,e x (e x era) + . . ., x = 8’ + (4.3) 
v,e x 8' + . . . 

r = y - v,e x (e x rO') + . . . (y = U' - 8 x ro') 

w = e* + v,e x e*+. . . ., E = e, + e x e. + v,e x (e x 
80) + . . . 

J.o = (Jo + e x J, - VzJO x e).e* + . ., (J, = Jbneken) 

The equations of the impulse balance and the impulse moment and the elasticity relation- 

ships take the form 

Q’ + q = p Iu” + 8” x e, + V1 (e x (e x %,))"I (4.4) 
M' + (rO' + u') x Q + m = p [(e, + 0 x eo) x u" + (Jo - 
VnJ, x e).e.* + (e x J,.W)‘l 

M = M, + a,.e’ + C,.V + 8 x (M, + a,.e’ + cOq + V,e x 
M,) + Wza, x 8' + co x (u' - v,e x r,yi.e 

Q = Q0 + b,.y + e’,e, 3_ 8 x (QO + b,.y + e’.c, + ‘/se X 
QO) - e.[(u’ - v2e x IO’) x b, + v,e’ x 001 

Unlike the exact equations (Sect.2), all the elastic and inertial characteristics are 

considered known here: in place of the unknown "rotated" tensor a = ai,"eken there is a, = 

aknek&O , etc. 

The second-order equations in the example from Sect.2 are 

Q, = 6, (u,' + Bu,' -'/,tP) - b,8 (u/ - 0) = -Q 

0, = b&z' + 5, (I+' - 0 - eu;) = 0 

M,' f (1 + ZJ,') Qx - u,'Q, = 0 

(4.5) 

For the rectilinear form u,=0= 0, b+;‘= -0. Linearizing (4.5) in the neighbourhood of 

this state, we arrive at the same result as in Sect.2. However, the exact moment balance 

equation is here used in (4.5), that contains third-order terms in the expression I' x Q. 

Discarding these small terms, we obtain after linearization 

a&Y + IQ + Q*b,-’ (1 - bIba-‘)*I tl = 0 

which differs from the "exact" equation. However, the difference vanishes for Qe bl. In this 

case ~~'41 and the non-linearities will be small, as is indeed assumed in the second-order 

theory. 

5. The model with tension without transverse shear. This modification is 

hardly fundamental for applications. In this case ra = O(a =1,2). Eq.(2.4) takes the form 

6rl = Meek&, + Q6r (Q = Q-e.,, r = r,) 

and we obtain in the case of the quadratic approximation n 

M = P.M, + a.% + cr, Q = Q. + br + c-x (5.1) 

Here the elastic properties are given by the tensor a, the vector c and the scalar b 
(tensile stiffness). 

We consider a straight rod and we construct a second-order theory for it. It is con- 

enient to separate the vector components in the xy plane perpendiuclar to the rod axis: 

u = uL + u,k, where ~1 = 3 i- z+,j, etc. In the general case r, =e,.r'-e,,,.r,'. For a rod with 

a straight axis r,,' = k, r' = k + u’. Expressing e, in conformity with (4.3) and retaining 

second-order terms in the equalities r = rs, r, = 0' we obtain 
r=u,‘- k.e,xu,‘---/,el~ (e,=le,I) 

“1 ‘-e81xk(i+u.‘)+e,(ul’xk+~/,e1)=0 
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Solving the last equation for BLr we arrive at the equalities 

eL = (1 - u,') k x uI’ + l/,O,u,’ r = u,’ + l/*uL” 

The expression for x from (4.3) can now be converted to the form 

x = k x I( 1 - IL,‘) Us’]’ $ Oz’ (k + u,~‘) + ‘/zul’ x uI” 

we limit ourselves later to the following simple modification: 

M, = 0, Q. = 0, c = 0, a = ae,e, + a,e,e, 

s = 0, J = Je,e, 

(5.2) 

(5.3) 

Compared to what is ordinarily necessary for applications, here there is just one con- 

straint, equality of the bending stiffnesses. The elasticity relationship M =a.% is 
written in the form 

M,ca,%'+ (a -l/,aJ k-u,’ x uID (5.4) 

M, = ak x [(I - uz’) ~~‘1’ + agez’uI’ 

The components & in the force expression 

Q = QJ_ + Q& = Lea -k Qes (5.5) 

are the connection reactions for which the elasticity relationships are not written down. 
Using the expressions for Q and I' from (5.1) and (5.2) and discarding third-order terms, 
we obtain from (5.5) 

Qz = b (u,' + '/rul'a) - ul'.QI (5.6) 

The moment balance Eq.(4.4) reduces in this case to the equalities 

M,'+ k.u,' x QI + m,=pJ(0,“---/,k.u,’ x uI”) 

ML’ + k (I+ u,‘) x QI + uI’ x Qzk + ml = pl (II,%,‘) 

From the latter it follows that 

QI=- a(1 - u,')[(l -uz')ul']" + k x [a,(@‘~,‘)‘- 

pl(u,‘0,‘)‘+ (I- u;)m,]+ buZ'uI' 
(5.7) 

Now (5.6) can be rewritten with allowable error in the form 

Q.=b(u,‘+‘/ 2 ul’*) + ul’.(aulm + m, x k) (5.8) 

Substitution of (5.8) and (5.7) and (5.4) into the impulse balance and impulse moment 
equations results in the system 

bu,” - pul" f qz - - [l/a bul’* + uI’. (aul”’ + m, x k)]’ 

auy + puI" - q, = {a (u,‘“uL’ $ 2u,“uL” + 2u,‘ul”) + 

k x [a (%‘u~‘)‘,- pJ (u,‘e,‘)’ + (1 - uL’) m,] + buz’ul’)’ 

a&3,” - pJf3,” + m,=l/, k x uI’.(a3uln - plul”)’ - uI’.ml 

(5.9) 

The right sides vanish in the linear approximation, which denotes separation of the 
longitudinal, bending and torsional strains. Second-order terms on the right generate a weak 
interaction of these kinds of strains. Eqs.(5.9) can be used to analyse non-linear waves 

/a/. 

6. Variational formulation for the lineargzed equations. A small strain is 
examined for a stressed reference configuration. The displacement u and rotation 0 are 
small quantities of the same order n while the forces and moments are represented by expres- 
sions of the type Q = Q,, + Ql, where Qr =0(q). All the second-order terms are retained in 
the variational equations of the virtual work principle. Substituting the expressions for x 
and I' from (4.3) into (2.5), we obtain 

(6.1) 

The variation n yields the work of the internal forces with opposite sign. The ex- 

pression for the work of the moments will be unusual in the work of the external forces 

M.60 = (M, + Ml). (60 + ‘/&-I x 60 .+ . . .) = (M, + Ml + 

V,M, x e) 48 + . . . 
(6.2) 
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(the representation used here 
x and o from (4.3)). 

The variational equation 
is written in the form 

for the small rotation vector results from (4.2) and recalls 

of statics (non-variable inertial forces are added in dynamics) 

(6.3) 

(QO* + Q1*). 6u 1”’ + (MO* i Ml* + ‘,/% MO* x 0). 60 (0’ = 0 

loads given 
shown the first-order terms (si,*6u, in (6.3) 

terms the following variational equation: 

s [(a + Q,‘).6u + (ml + Ml’ + ro) x Q1 + u’ X Qoj*W ds + 

’ (Q1*-Ql).6uI,‘+(M,*-M&68(,‘=0 

(6.4) 

Q1 and M, are expressions from (3.1). 
Eqs.(6.4) and (3.1) are equivalent. Finally, the 

is not the derivation of (3.1) but the construction of 
problems, say). 
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